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FLOW OF A VISCOUS LIQUID BETWEEN MOVING 
PERMEABLE SURFACES 

A. M. Volk UDC 532.51 

Plane motion of a viscous incompressible liquid between rotating coaxial permeable vertical cylinders of 

infinite length and flow between moving horizontal permeable planes are considered. Exact solutions are 
obtained for the Navier-Stokes equation in the case of a constant volume flow rate of a liquid in the direction 
normal to the surface. The boundary layer and mainstream flows are investigated. 

Studies of the mechanics of a viscous liquid moving in the space confined by permeable surfaces are important 

both theoretically and practically. The flow structure in the space between the surfaces and in the boundary layer is 
very important for solution of heat and mass transfer problems [1 ]. Phase separation in centrifugal and drum filters 

occurs during motion of a liquid in a permeable rotating cylinder. 
There are some literature reports on exact similarity solutions of the problem on the motion of a viscous liquid 

between rotating coaxial impermeable vertical cylinders of infinite length [2, 3 ]. It is shown that when the angular 

velocity of the cylinders coincides, the liquid rotates as a solid. Studies of continuum motion between permeable 

surfaces are of interest both theoretically and practically [4, 5 ]. 
We consider steady-state motion of a viscous incompressible liquid confined between two rotating coaxial 

permeable cylinders of infinite length. It is assumed that there is a linearly distributed source or sink on the cylinder 
axis, with the output Q. Let the cylinder through whose surface inflow of the liquid occurs at a pressure P0 have the 
radius 1~ 1 and rotate with the angular velocity f~l and the outflow cylinder have the radius R2 and the angular velocity 

ff~2 (Fig. 1). A cylindrical coordinate system r, ~o, z with the z axis along the cylinder axis is chosen. We consider 

the case where the axial velocity of the liquid is constant along the z axis. From symmetry considerations it follows 

that 

d ___0; ~--~--c9 __0; v=v(r);  u=u(r) ;  /9=p(r) .  (1) 
dq0 de 

The Navier-Stokes and continuity equations of plane motion are written for conditions (1) as 

( Ov u 2 ) = - - ~ O P  + i x (  O2o + 1__ Ov v ). (2) 
P v Or r . Or ~ Or 2 r Or r 2 ' 

O l + =~t + - -  
r ~ dr s r dr r 2 

1 0 (4) 
- -  ( r o )  = O.  

I" dr 

Continuity equation (4) has the solution v. r = const, which reflects constancy of the volume flow rate Q of 
the liquid through cylindrical surfaces of unit length. The radial velocity between the cylinders will be v = Q/(2z~r). 
The velocity of the liquid flow into the space between the cylinders is vl --- Q/(2nR1) and the flow velocity out of the 
space is v2 = Q/(2~R2). Equations (2) and (3) are transformed to the system of two ordinary differential equations 

dP ( u2 Q~ ) 

dr -- p -]- - -  ' r 4n~r 3 
(5) 
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Fig. 1. Flow of a viscous liquid between rotating coaxial permeable cylinders of 
infinite length with a source (a) or sink (b) linearly distributed along the axis. 

d 6  r 2 z ~  , , dr r ~ . + 1 u =  O 

with the boundary conditions 

become 

PI~=~, = Po; ut~=~, -~ f2~R~ = u~; ul~..R ' = f2zR2 = us. 

We go over to the relative radius r' -- r/R2, denote r0 = R1/R2, and omit the symbol '. Equations (5) and (6) 

_ _  _ _  . q _  U 2  

dr = 9 r + 4~2R ~ r~ = 9 i  r ' 

dZu 1 (_ Q 1) du 1 ( 2 _ ~ + l ) u = 0 .  
d r  2 r 2a~ Or r "~ 

The boundary conditions are 

Ptr=_r, = P0; Ul,=r. = Ul; Ulr= 1 = U2. 

The solution of (8) is sought in terms of r n. Substitution gives 

(6) 

(7) 

(8) 

(9) 

c~ (10) U = Clr n+l + 
r 

Here n = Q/(2~v).  The absolute value of this quantity is the Reynolds number ReQ -- I nl = IQI/(27rv) and 

characterizes the radial flow rate. 

From boundary conditions (9) we find the arbitrary constants and obtain the exact self-similar solution 

U = it2 - -  t t l r~  r n+! --~ uir~ - -  u2r~+2 ~ 1  (11) 
1 r~o +2 1 - - r ~  +2 r 

If there is a source with power Q > 0 in the central region, then n > 0 and ro < r ___ 1. With a sink Q < 0, we 

have n < 0 and 1 _< r _< r0. We find the transverse velocity derivative, the shear stresses of the friction forces between 
cylindrical layers of unit length, and the total agular momentum of these forces relative to  the rotation axis of the 

cylinders. Substitution gives 

2;X 

: [ 0 ( + ) ]  
0 

For solution (11) we obtain 

735 



d____~u = (n + 1) (u2 - -  Uxro) r n uxr o - -  u2r'~ +2 1 
R2dr 1 - -  r~ +2 - -  1 ~- r~ +2 r~- , (12) 

~ [ n (u2 - -  ulro) rn 2 (u]["o - -  u~r~-}-2) l ] 
"crm = "~2.  I r~ +2 ~ 1 - -  r~ +~- r 2 , (13) 

L = 2 ~ R ~ [ n ( u 2 - u l r o )  r~+~__ 2(Ulro--u~r~+2) ] 
1 - -  r~  + 2  1 - -  r~  + 2  " ( 1 4 )  

Relations (12)-(14) show that Inl >> i ,  r8 +1 << 1 for a source (sink) of sufficient power and the flow at the 

outflow surface has a large shear velocity gradient 

du I -= Q (u2 - U~ro) 
R2dr Ir=l 2~V 

Since lim nrn= 0 at 0 < r < 1, there is a boundary layer at the outflow surface and the flow pattern in it is 
r t -> + r162 

described by expressions containing r n. We take the distance 6 at which the component I n I r n is sufficiently small, 

i.e., In[ (1-6) n = e, as the boundary layer thickness. 

Using the second extraordinary limit, we estimate the boundary layer thickness as 

exp (n6) "-" Int ; 6 ~ 2~v In IQ/(2nve)[ 
8 q 

It is recommended to take e in such a way that the transverse velocity derivative at  the boundary layer edge 

would differ from the corresponding derivative in the mainstream flow by 1% [3 ]. Accordingly, we find e -- 

0.011 (u2R2/HIR1) - I I from (12). 

Equations (13) and (14) give the shear stresses Of the friction forces and the total angular momentum of 

these forces on the outflow surface 

oQ (u2R~ - -  u~R~) 
"[r~lr-~l ~--- 2~R~ 

L[r=~ ~-- oQ (u~R~ - -  u,R~). 

Generally speaking, these quantities are independent of viscosity. 

With all the above estimates taken into consideration, the motion outside the boundary layer follows the law 

uiro 
u ~ (15) 

/ ,  

Thus, the mainstream flow is defined by the liquid viscosity and the velocity of the inflow surface: 

du ~, uj...~o 2~tUlro 
R~dr - -  R~r~ ; "~r~ ~ R2 r2 , L ~" ,-- 4~pulR1. 

The boundary layer has no substantial effect on the integral properties of the motion. Integration of (15) 

gives the average transverse velocity < u >  --- ulro In ro / ( r  o - 1). 
With pressure at the inflow surface known, integration of Eq. (6) gives the pressure distribution in the space 

between the cylinders 

~(f.j_Zo  + - - + - -  1 - 7 / .  
P - -  r~ \ r3 4~2R~r~ 

Hence we find the pressure on the outflow surface 

ptr=, po + o I T  + (1 - d). 
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Fig. 2. Flow of a viscous liquid between moving horizontal permeable planes (a) 
and in the boundary layer (b). 

From (14) we obtain the condition for a minimum of the total angular momentum of the friction forces on 

the outflow surface 

L[r=t O; u~R~_(1 + 4QV) ~___ ~ _ _  U 1 . R 1  , 

that is, the moments of momentum on the permeable surfaces should be sufficiently close in value: u l R 1  -- u2R2  . 

If the ratio of the distance between the cylinders to the inflow cylinder radius is sufficiently small, the 
problem considered reduces to a liquid flow between two horizontal infinitely long parallel planes. We fix the 

Cartesian coordinate system x, y in the second plane, through which the liquid flows out. Let the first plane be a 

distance h from the second plane and move with the relative velocity u 0 -- ul-u2. The x axis is directed parallel to the 

vector ~o, and the y axis along the normal to the surface. The liquid motion in the normal direction is assumed to 

have a constant velocity v0 (Fig. 2a). In the present coordinate system v0 < 0. 
The Navier-Stokes equation [3 ] for the motion considered becomes 

and has the general solution 

du d2u 
U 0 ' " ~  V 

dy dy ~ 

u = cl -}- c2 exp ( - ~  ) . 

From the boundary conditions 

ulu=0 = 0; ulu---n = lu01 = u0 

we find the arbitrary constants and obtain 

u = , 1 - -  exp . (16) 
l - - e x p  ( ~ )  

The dimensionless complex Rey -- Iv01 h/v is the Reynolds number and relates the longitudinal liquid motion 
to the liquid flow in the direction normal to the planes. 

Integration of distribution (16) gives the average longitudinal liquid velocity between the permeable planes 

[ 1 1] 
< u >  = u o  

1 - -  exp ( - -  R%) R% 
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The longitudinal velocity derivative and the shear stresses of the friction forces are found as 

du = UoVo exp ( r o y  I 
dy v [1 - -  exp ( ~  Rey)] \ v, j ' 

du pu0v0 exp ( roy I 
�9 r = l x  dy  = l ~ e x p ( - - R % )  \ ~ 1" 

(17) 

When Rey > 5, the longitudinal flow on the outflow surface is characterized by the large velocity gradient 

du /dy  ly=O = -u0vo/v, and the shear stresses of the friction forces depend slightly (less than by 1%) on the viscosity. 

In this case ~ [ y~O = -pu0vo. This means that there is a boundary layer at the outflow surface. We will estimate the 

boundary layer [3 ]. 
In the mainstream flow the longitudinal velocity derivative (17) is sufficiently close to zero, therefore the 

boundary layer thickness 6 is found from the condition du/dyly-~ = 0.01. Hence we obtain 

'~ 79n 

From the relations 
h 

u~ = .f (uo - -  u) ely; 
0 

h h 

--: = .! 2) dy  
o 0 

we find the displacement thickness 61 = - v / V  0 = h/Rey, the momentum loss thickness 62 -- v/2vo = h/2Rey, and the 

energy loss thickness 6a = -Sv/6vo = 5h/6Rey (Fig. 2b). 
Application of the equipartition theorem for a flat laminar boundary layer gives the energy flux change per 

unit length in the boundary layer 

dy ~ - -  

dx o 

The same value is obtained when using the equipartition theorem for a turbulent boundary layer flow: 

h 2 2 

iT)   .ooo 
d x  6 J p  

This means that the friction forces arising during the liquid outflow cause large energy expenditures on heating. 

These expenditures characterize losses due to flow separation in relative motion of permeable planes and to the 

normal liquid flow. 
If Rey > 5, we can assume u = u0[1 - exp(v0y/v) ] and <u> = u0(1-Re~l). At large Rey the distribution of 

the longitudinal liquid velocity is close to linear in the boundary layer, u = -(u0v0y/v), and is uniform in the 

mainstream flow, <u> = u0 (Fig. 2). 
The exact self-similar solutions obtained and the hydrodynamic flow characteristics found show that the 

direction and intensity of the liquid motion through a permeable surface are important. 
The flow patterns near the inflow surface and in the mainstream are determined by the liquid viscosity and 

depend on the linear velocity of this surface and the intensity of motion in the normal direction. The motion at the 

outflow surface is characterized by a large velocity gradient and the presence of a boundary layer (see Fig. 1). The 
friction forces and the total angular momentum of these forces are generally speaking, independent of the liquid 

viscosity. 
The present results can be used in studies of filtration processes employing permeable membranes in a 

centrifugal force field or under pressure [6 ] as well as for the design of heat and mass transfer contact devices. 
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N O T A T I O N  

h, distance between the planes; n, exponent; L, total angular momentum of the friction forces; P, pressure; 

Q, volume flow rate; ~o, r, z, cylindrical coordinate system; R1, R2, radii of cylinders with liquid inflow and outflow; 

Ul, u2, velocities of the inflow and outflow surfaces; u0 -- Ul - u2, relative velocity of the inflow plane; v, radial liquid 
velocity; Vl, v2, velocities of liquid inflow to and outflow from the space between the cylinders; v0, liquid velocity in 
the direction normal to the plane; x, y, Cartesian coordinate system; 6, boundary layer thickness; 61, displacement 

thickness; 62, momentum loss thickness; 63, energy loss thickness;/~, dynamic viscosity; v, kinematic viscosity; p, 

liquid density; 7:, shear stresses of the friction forces; f~l, f~2, angular rotational velocities of the inflow and outflow 
cylinders; ReQ = I QI/2:rv, Rey - I v01h/v, Reynolds numbers; u, transverse liquid velocity between cylinders or 

velocity between planes. 
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